Spin Dynamics and Snake Resonances

Spin Dynamics in Rings

Precession Equation in Laboratory Frame: (Thomas [1927], Bargmann, Michel, Telegdi [1959])

$$d\mathbf{S}/dt = -(e/\gamma m) [(1+G\gamma)\mathbf{B}_{\perp} + (1+G)\mathbf{B}_{\parallel}] \times \mathbf{S}$$

Lorentz Force equation:

$$d\mathbf{v}/dt = -(e/\gamma m) [$$
 \mathbf{B}_{\perp} $] \times \mathbf{v}$

- For pure vertical field: Spin rotates Gy times faster than motion, $v_{sp} = Gy$
- For spin manipulation:
 At low energy, use longitudinal fields
 At high energy, use transverse fields

Spin tune and Depolarizing Resonances

Depolarizing resonance condition:

Number of spin rotations per turn = Number of spin kicks per turn <u>Imperfection resonance</u> (magnet errors and misalignments):

$$v_{\rm sp} = n$$

<u>Intrinsic resonance</u> (Vertical focusing fields):

$$v_{sp} \pm Q_y = Pn$$

P: Superperiodicity [AGS: 12]

 Q_v : Betatron tune [AGS: 8.75]

Weak resonances: some depolarization

Strong resonances: partial or complete spin flip

Resonance Crossing at Intermediate Energies

Froissart-Stora:
$$\frac{P_f}{P_i} = 2 e^{-\frac{\pi \varepsilon^2}{2\alpha}} - 1$$
 [α : crossing speed]

Non-adiabatic ($\varepsilon^2/\alpha << 1$) \leftrightarrow Adiabatic ($\varepsilon^2/\alpha >> 1$)

$$\leftrightarrow$$
 Adiabatic $(\epsilon^2/\alpha >> 1)$

$$P_f/P_i = 1$$

$$P_f/P_i = -1$$

Siberian Snakes (Local Spin Rotators)

$$\cos(180^{\circ}v_{\rm sp}) = \cos(\delta/2) \cdot \cos(180^{\circ} \, \rm Gy)$$

$$\delta \neq 0^{\circ} \rightarrow \nu_{sp} \neq n$$

No imperfection resonances Partial Siberian snake (AGS)

$$\delta = 180^{\circ} \rightarrow \nu_{\rm sp} = \frac{1}{2}$$

No imperfection resonances and

No Intrinsic resonances

Full Siberian Snake

(Ya.S. Derbenev and A.M. Kondratenko)

Two Siberian Snakes in RHIC

Spin Resonances in RHIC

(Naïve) Limits for Siberian Snakes

Spin rotation of Siberian snake (δ) > Spin rotation of driving fields (ϵ) "Spin rotation of Siberian snake drives strong imperfection resonance"

Imperfection resonances $\varepsilon \propto E_{nergy}$

Intrinsic resonances $\epsilon \propto \sqrt{\text{Energy}}$

Partial Siberian snake (AGS, $\delta = 9^{\circ}$) $\varepsilon < \delta/360^{\circ}$

One full snake $\varepsilon < 1/2$

Two full snakes (RHIC) $\varepsilon < 1$

N full snakes (LHC? N \approx 16) ϵ < N/2

Polarization with Snakes – Snake Resonances

- Higher order resonance condition $v_{sp} + mQ_y = k$ (m, k = integer) driven by interaction of intrinsic resonance $G\gamma + Q_y = k$ with large spin rotations of dipoles and snakes.
- No non-linear drive term necessary combination of rotations is already non-linear.
- "Snake resonance strength" depends on intrinsic resonance strength and therefore energy
- For $v_{sp}=1/2+\Delta v_{sp} \rightarrow Q_y = (2k-1)/2m-\Delta v_{sp}/m$
- First analytical solution of isolated resonance with snakes by S.R. Mane, NIM A 498 (2003) 1

two snakes (m: odd)

Slow Crossing of a Single Resonance with and w/o Snakes

Without snakes: spin flip, width $\sim \pm 5\epsilon$

With snakes: opening/closing of "spin cone", nodes at ± 2

$$\Omega\left(Q,Gg\right) := \sqrt{\left(Q - Gg\right)^2 + \epsilon^2} \qquad \eta\left(Q,Gg\right) := \frac{\epsilon}{\Omega\left(Q,Gg\right)} \cdot \sin\left(\frac{\Omega\left(Q,Gg\right) \cdot \pi}{2}\right) \qquad S(m,\delta) := \prod_{k=1}^{m} \sin(k \cdot \pi - \delta) \qquad C(m,\delta) := \prod_{k=0}^{trunc(m)} \cos((m-k) - \pi - \delta)$$

$$n3(Q, Gg) := \left(1 - \eta(Q, Gg)^{2}\right) \left[1 + \sum_{k=1}^{40} (-1)^{k} \cdot \frac{C\left(k, Q - \frac{1}{2}\right)^{2}}{S\left(k, Q - \frac{1}{2}\right)^{2}} \cdot \eta(Q, Gg)^{2 \cdot k}\right]$$

Gg

n3ns(Q,Gg) :=
$$\frac{(Q - Gg)}{\sqrt{(Q - Gg)^2 + \epsilon^2}}$$

S.R. Mane, NIM A 498 (2003) 1

Spin tracking trough strongest RHIC resonances

- Two Siberian snakes
- 1 mm rms misalignment
- 0.2 mm rms corrected closed orbit
- 20 π µm emittance (95%)

[A. Luccio et al. (SPINK)]

